Antidiabetic Efficacy and Hemolytic Activity of the Polyphenolic Extract Derived from Allium sativum L.: An In vitro and In silico Evaluation
DOI:
https://doi.org/10.69998/j2br.v1i2.22Keywords:
Allium sativum, Polyphenolic extract, UHPLC-MS/MS analysis, Mongophenoside B, Catechin, Cyanidin 3-O-beta-D sambubioside, Antidiabetic activity, Hemolytic activityAbstract
This study aimed to identify the main polyphenolic compounds of Allium sativum L. (A. sativum) extract and evaluate its antidiabetic and antihemolytic properties. A. sativum polyphenolic extract (ASPE) was subjected to UHPLC-MS/MS analysis to determine its polyphenolic composition. The antidiabetic activity was assessed through enzyme inhibition assays targeting α-amylase and α-glucosidase, comparing the extract’s efficacy to the standard drug acarbose. Hemolytic activity was evaluated using rat erythrocytes exposed to varying concentrations of the extract (5–100 mg/mL) to determine its cytotoxicity on blood cells. Statistical analyses were carried out to assess the significance of the observed effects. An in silico study was conducted using Mastro 11.5 from the Schrödinger suite to evaluate antidiabetic activity against α-amylase and α-glucosidase. UHPLC-MS/MS analysis revealed mongophenoside B as the most abundant compound, alongside catechin and cyanidin 3-O-beta-D sambubioside. The extract demonstrated a strong inhibitory effect on α-amylase (82.31% inhibition at 1 mg/mL; IC50 = 0.047 ± 0.002 mg/mL) and α-glucosidase (IC50 = 0.055 ± 0.004 mg/mL), surpassing acarbose in potency. Hemolytic assays indicated a dose-dependent increase in hemolysis, with significant cytotoxicity observed at higher concentrations (up to 21.24 ± 1.54% at 100 mg/mL), suggesting safe application only at lower doses. The ASPE exhibits potent antidiabetic properties, attributable to the identified compounds catechin, cyanidin 3-O-beta-D sambubioside, and mongophenoside B, the latter reported here for the first time in garlic. These findings suggest that the synergistic action of these compounds contributes to effective enzyme inhibition. However, the extract’s hemolytic activity at higher doses indicates a need for caution in therapeutic applications. The in silico study showed strong inhibitory activity of mongophenoside B, catechin, and cyanidin 3-O-beta-D sambubioside against α-amylase and α-glucosidase, confirming the in vitro results. Further studies are warranted to explore the antidiabetic potential of mongophenoside B and to assess the extract’s safety profile for clinical use.
Downloads
References
Alam, A., Al Arif Jahan, A., Bari, M.S., Khandokar, L., Mahmud, M.H., Junaid, M., Chowdhury, M.S., Khan, M.F., Seidel, V., Haque, M.A., 2023. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Critical Reviews in Food Science and Nutrition 63(23), 6580-6614. DOI: 10.1080/10408398.2022.2036094.
Ali, J., Irshad, R., Li, B., Tahir, K., Ahmad, A., Shakeel, M., Khan, N.U., Khan, Z.U.H., 2018. Synthesis and characterization of phytochemical fabricated zinc oxide nanoparticles with enhanced antibacterial and catalytic applications. Journal of Photochemistry and Photobiology B: Biology 183, 349-356. DOI: 10.1016/j.jphotobiol.2018.05.006.
Amin, A., Hamza, A.A., 2006. Effects of Roselle and Ginger on cisplatin‐induced reproductive toxicity in rats. Asian journal of andrology 8(5), 607-612. DOI: 10.1111/j.1745-7262.2006.00179.x.
Amrati, F.E.-Z., Chebaibi, M., Galvao de Azevedo, R., Conte, R., Slighoua, M., Mssillou, I., Kiokias, S., de Freitas Gomes, A., Soares Pontes, G., Bousta, D., 2023. Phenolic composition, wound healing, antinociceptive, and anticancer effects of Caralluma europaea extracts. Molecules 28(4), 1780. DOI: 10.3390/molecules28041780.
Andleeb, S., Tariq, F., Muneer, A., Nazir, T., Shahid, B., Latif, Z., Abbasi, S.A., Haq, I.u., Majeed, Z., Khan, S.U.-D., 2020. In vitro bactericidal, antidiabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesized silver nanoparticles using Allium sativum clove extract incubated at various temperatures. Green Processing and Synthesis 9(1), 538-553.
Ashraf, R., Khan, R.A., Ashraf, I., 2011. Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak J Pharm Sci 24(4), 565-570.
Azantsa, B.G., Mbong, M.-A.A., Takuissu, G.R., Matsinkou, R.S., Djuikoo, I.L., Youovop, J.F., Ngondi, J.L., Oben, J.E., 2019. Anti hemolytic, anti-lipid peroxidation and antioxidant properties of three plants locally used to treat metabolic disorders: Allium sativum, Persea americana and Citrus sinensis.
Banerjee, S., Mukherjee, P.K., Maulik, S., 2003. Garlic as an antioxidant: the good, the bad and the ugly. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 17(2), 97-106.
Bayan, L., Koulivand, P.H., Gorji, A., 2014. Garlic: a review of potential therapeutic effects. Avicenna journal of phytomedicine 4(1), 1.
Chebaibi, M., Bourhia, M., Amrati, F.e.-z., Slighoua, M., Mssillou, I., Aboul-Soud, M.A., Khalid, A., Hassani, R., Bousta, D., Achour, S., 2024. Salsoline derivatives, genistein, semisynthetic derivative of kojic acid, and naringenin as inhibitors of A42R profilin-like protein of monkeypox virus: in silico studies. Frontiers in Chemistry 12, 1445606. DOI: 10.3389/fchem.2024.1445606.
Chebaibi, M., Bousta, D., Bourhia, M., Baammi, S., Salamatullah, A.M., Nafidi, H.-A., Hoummani, H., Achour, S., 2022. Ethnobotanical Study of Medicinal Plants Used against COVID‐19. Evidence‐Based Complementary and Alternative Medicine 2022(1), 2085297. DOI: 10.1155/2022/2085297.
Choudhary, M., Kumar, V., Malhotra, H., Singh, S., 2015. Medicinal plants with potential anti-arthritic activity. Journal of intercultural ethnopharmacology 4(2), 147. DOI: 10.5455/jice.20150313021918.
Dong, Y., Ruan, J., Ding, Z., Zhao, W., Hao, M., Zhang, Y., Jiang, H., Zhang, Y., Wang, T., 2020. Phytochemistry and comprehensive chemical profiling study of flavonoids and phenolic acids in the aerial parts of Allium Mongolicum Regel and their intestinal motility evaluation. Molecules 25(3), 577. DOI: 10.3390/molecules25030577.
Eidi, A., Eidi, M., Esmaeili, E., 2006. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 13(9-10), 624-629. DOI: 10.1016/j.phymed.2005.09.010.
El-Saber Batiha, G., Magdy Beshbishy, A., G. Wasef, L., Elewa, Y.H., A. Al-Sagan, A., Abd El-Hack, M.E., Taha, A.E., M. Abd-Elhakim, Y., Prasad Devkota, H., 2020. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 12(3), 872. DOI: 10.3390/nu12030872.
El Abdali, Y., Beniaich, G., Mahraz, A.M., El Moussaoui, A., Bin Jardan, Y.A., Akhazzane, M., Chebaibi, M., Nafidi, H.-A., Eloutassi, N., Bourhia, M., 2023. Antibacterial, Antioxidant, and in silico NADPH Oxidase Inhibition Studies of Essential Oils of Lavandula dentata against Foodborne Pathogens. Evidence-Based Complementary and Alternative Medicine 2023, 9766002. DOI: 10.1155/2023/9766002.
Elrherabi, A., Abdnim, R., Loukili, E.H., Laftouhi, A., Lafdil, F.Z., Bouhrim, M., Mothana, R.A., Noman, O.M., Eto, B., Ziyyat, A., 2024. Antidiabetic potential of Lavandula stoechas aqueous extract: insights into pancreatic lipase inhibition, antioxidant activity, antiglycation at multiple stages and anti-inflammatory effects. Frontiers in Pharmacology 15, 1443311. DOI: 10.3389/fphar.2024.1443311.
Faroughi, F., Charandabi, S.M.-A., Javadzadeh, Y., Mirghafourvand, M., 2018. Effects of garlic pill on blood glucose level in borderline gestational diabetes mellitus: a triple blind, randomized clinical trial. Iranian Red Crescent Medical Journal 20(7). DOI: 10.5812/ircmj.60675.
Fattizzo, B., Barcellini, W., 2022. Autoimmune hemolytic anemia: causes and consequences. Expert review of clinical immunology 18(7), 731-745. DOI: 10.1080/1744666X.2022.2089115.
Fossen, T., Andersen, Ø.M., 1997. Malonated anthocyanins of garlic Allium sativum L. Food chemistry 58(3), 215-217.
Galaviz, K.I., Narayan, K.V., Lobelo, F., Weber, M.B., 2018. Lifestyle and the prevention of type 2 diabetes: a status report. American journal of lifestyle medicine 12(1), 4-20. DOI: 10.1177/1559827615619159.
Hamidi, M., Tajerzadeh, H., 2003. Carrier erythrocytes: an overview. Drug delivery 10(1), 9-20. DOI: 10.1080/713840329.
Jelodar Gholamali, A., Maleki, M., Motadayen, M., Sirus, S., 2005. Effect of fenugreek, onion and garlic on blood glucose and histopathology of pancreas of alloxan-induced diabetic rats. Indian J. Med. Sci 59, 64-69.
Jung, E.H., Ran Kim, S., Hwang, I.K., Youl Ha, T., 2007. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. Journal of Agricultural and Food Chemistry 55(24), 9800-9804. DOI: 10.1021/jf0714463.
Karim, M.A., Islam, M.A., Islam, M.M., Rahman, M.S., Sultana, S., Biswas, S., Hosen, M.J., Mazumder, K., Rahman, M.M., Hasan, M.N., 2020. Evaluation of antioxidant, anti-hemolytic, cytotoxic effects and anti-bacterial activity of selected mangrove plants (Bruguiera gymnorrhiza and Heritiera littoralis) in Bangladesh. Clinical Phytoscience 6, 1-12. DOI: 10.1186/s40816-020-0152-9.
Kasetti, R.B., Nabi, S.A., Swapna, S., Apparao, C., 2012. Cinnamic acid as one of the antidiabetic active principle (s) from the seeds of Syzygium alternifolium. Food and Chemical Toxicology 50(5), 1425-1431. DOI: 10.1016/j.fct.2012.02.003.
Khan, A., Safdar, M., Ali Khan, M.M., Khattak, K.N., Anderson, R.A., 2003. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes care 26(12), 3215-3218. DOI: 10.2337/diacare.26.12.3215.
Kobayashi, Y., Suzuki, M., Satsu, H., Arai, S., Hara, Y., Suzuki, K., Miyamoto, Y., Shimizu, M., 2000. Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. Journal of agricultural and food chemistry 48(11), 5618-5623. DOI: 10.1021/jf0006832.
Kumar, A., Alfhili, M.A., Bari, A., Ennaji, H., Ahamed, M., Bourhia, M., Chebaibi, M., Benbacer, L., Ghneim, H.K., Abudawood, M., 2022. Apoptosis-mediated anti-proliferative activity of Calligonum comosum against human breast cancer cells, and molecular docking of its major polyphenolics to Caspase-3. Frontiers in Cell and Developmental Biology 10, 972111. DOI: 10.3389/fcell.2022.972111.
Li, X., Li, S., Chen, M., Wang, J., Xie, B., Sun, Z., 2018. (−)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food & function 9(9), 4651-4663. DOI: 10.1039/C8FO01293H.
Marella, S., 2017. Flavonoids-The most potent poly-phenols as antidiabetic agents: an overview. Modern Approaches in Drug Designing 1(3), 2-5. DOI: 10.31031/MADD.2017.01.000513.
Matsui, T., Tanaka, T., Tamura, S., Toshima, A., Tamaya, K., Miyata, Y., Tanaka, K., Matsumoto, K., 2007. α-Glucosidase inhibitory profile of catechins and theaflavins. Journal of agricultural and food chemistry 55(1), 99-105. DOI: 10.1021/jf0627672.
Metouekel, A., Badrana, F., Kachkoul, R., Chebaibi, M., Akhazzane, M., El Moussaoui, A., Touil, N., El Amri, H., El Fahime, E., El Kazzouli, S., 2024. Genetic Characterization and Chemical Identification of Moroccan Cannabis sativa (L.) Seeds: Extraction, and In Vitro and In Silico Biological Evaluation. Plants 13(14), 1938. DOI: 10.3390/plants13141938.
Papu, S., Jaivir, S., Sweta, S., Singh, B., 2014. Medicinal values of garlic (Allium sativum L.) in human life: an overview. Greener Journal of Agricultural Sciences 4(6), 265-280. DOI: 10.15580/GJAS.2014.6.031914151).
Park, J.-H., Bae, J.-H., Im, S.-S., Song, D.-K., 2014. Green tea and type 2 diabetes. Integrative Medicine Research 3(1), 4-10. DOI: 10.1016/j.imr.2013.12.002.
Phan, A.D.T., Netzel, G., Chhim, P., Netzel, M.E., Sultanbawa, Y., 2019. Phytochemical characteristics and antimicrobial activity of Australian grown garlic (Allium sativum L.) cultivars. Foods 8(9), 358. DOI: 10.3390/foods8090358.
Rahman, K., Lowe, G.M., 2006. Garlic and cardiovascular disease: a critical review. The Journal of nutrition 136(3), 736S-740S. DOI: 10.1093/jn/136.3.736S.
Ried, K., Toben, C., Fakler, P., 2013. Effect of garlic on serum lipids: an updated meta-analysis. Nutrition reviews 71(5), 282-299. DOI: 10.1111/nure.12012.
Saleh, E.A.M., Khan, A.U., Tahir, K., Almehmadi, S.J., Al-Abdulkarim, H.A., Alqarni, S., Muhammad, N., Dawsari, A.M.A., Nazir, S., Ullah, A., 2021. Phytoassisted synthesis and characterization of palladium nanoparticles (PdNPs); with enhanced antibacterial, antioxidant and hemolytic activities. Photodiagnosis and Photodynamic Therapy 36, 102542. DOI: 10.1016/j.pdpdt.2021.102542.
Sayes, C.M., Reed, K.L., Warheit, D.B., 2007. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological sciences 97(1), 163-180. DOI: 10.1093/toxsci/kfm018.
Shang, A., Cao, S.-Y., Xu, X.-Y., Gan, R.-Y., Tang, G.-Y., Corke, H., Mavumengwana, V., Li, H.-B., 2019. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 8(7), 246.
Shi, M., Loftus, H., McAinch, A.J., Su, X.Q., 2017. Blueberry as a source of bioactive compounds for the treatment of obesity, type 2 diabetes and chronic inflammation. Journal of Functional Foods 30, 16-29.
Slighoua, M., Chebaibi, M., Mahdi, I., Amrati, F.E.-z., Conte, R., Cordero, M.A.W., Alotaibi, A., Saghrouchni, H., Agour, A., Zair, T., 2022. The LC-MS/MS Identification and Analgesic and Wound Healing Activities of Lavandula officinalis Chaix: In Vivo and In Silico Approaches. Plants 11(23), 3222.
Solinas, G., Becattini, B., 2017. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Molecular metabolism 6(2), 174-184.
Sun, C., Zhao, C., Guven, E.C., Paoli, P., Simal‐Gandara, J., Ramkumar, K.M., Wang, S., Buleu, F., Pah, A., Turi, V., 2020. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Frontiers 1(1), 18-44.
Taslimi, P., Gulçin, İ., 2017. Antidiabetic potential: In vitro inhibition effects of some natural phenolic compounds on α‐glycosidase and α‐amylase enzymes. Journal of Biochemical and Molecular Toxicology 31(10), e21956.
Thielecke, F., Boschmann, M., 2009. The potential role of green tea catechins in the prevention of the metabolic syndrome–a review. Phytochemistry 70(1), 11-24.
Tourabi, M., Nouioura, G., Touijer, H., Baghouz, A., El Ghouizi, A., Chebaibi, M., Bakour, M., Ousaaid, D., Almaary, K.S., Nafidi, H.-A., 2023. Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. Plants 12(21), 3783. DOI: 10.3390/plants12213783.
Umeno, A., Horie, M., Murotomi, K., Nakajima, Y., Yoshida, Y., 2016. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 21(6), 708. DOI: 10.3390/molecules21060708.
Urbańska, N., Nartowska, J., Skorupska, A., Ruszkowski, D., Giebułtowicz, J., Olszowska, O., 2009. Determination and haemolytic activity of saponins in hairy root culture of Platycodon grandiforum A. DC.
Wu, T., Luo, J., Xu, B., 2015. In vitro antidiabetic effects of selected fruits and vegetables against glycosidase and aldose reductase. Food science & nutrition 3(6), 495-505. DOI: 10.1002/fsn3.243.
Yang, D., Dunshea, F.R., Suleria, H.A., 2020. LC‐ESI‐QTOF/MS characterization of Australian herb and spices (garlic, ginger, and onion) and potential antioxidant activity. Journal of Food Processing and Preservation 44(7), e14497. DOI: 10.1111/jfpp.14497.
Younas, J., Hussain, F., 2014. In vitro antidiabetic evaluation of allium sativum L. International Journal of Chemical and Biochemical Sciences 5, 22-25.
Zejli, H., Metouekel, A., Zouirech, O., Maliki, I., El Moussaoui, A., Lfitat, A., Bousseraf, F.Z., Almaary, K.S., Nafidi, H.-A., Khallouki, F., 2024. Phytochemical Analysis, Antioxidant, Analgesic, Anti-Inflammatory, Hemagglutinin and Hemolytic Activities of Chemically Characterized Extracts from Origanum grosii (L.) and Thymus pallidus (L.). Plants 13(3), 385. DOI: 10.3390/plants13030385.
Zhai, B., Zhang, C., Sheng, Y., Zhao, C., He, X., Xu, W., Huang, K., Luo, Y., 2018. Hypoglycemic and hypolipidemic effect of S-allyl-cysteine sulfoxide (alliin) in DIO mice. Scientific reports 8(1), 3527. DOI: 10.1038/s41598-018-21421-x.
Zhu, W., Jia, Q., Wang, Y., Zhang, Y., Xia, M., 2012. The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP–PKA-dependent signaling pathway. Free Radical Biology and Medicine 52(2), 314-327. DOI: 10.1016/j.freeradbiomed.2011.10.483.
Downloads
Published
Data Availability Statement
Data will be available upon request from the corresponding author.
Issue
Section
License
Copyright (c) 2025 Mourad A. M. Aboul-Soud, Amira Metouekel, Amal Elrherabi, Adamou Boubacar, El Hassania Loukili, Mohamed Bnouham, Laila Benbacer (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.